10. C-Terminal Modification and Multimerization Increase the Efficacy of a Proline-Rich Antimicrobial Peptide

Abstract:

Two series of branched tetramers of the proline-rich antimicrobial peptide (PrAMP), Chex1-Arg20, were prepared to improve antibacterial selectivity and potency against a panel of Gram-negative nosocomial pathogens including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa. First, tetramerization was achieved by dithiomaleimide (DTM) conjugation of two C-terminal-cysteine bearing dimers that also incorporated C-terminal peptide chemical modification. DTM-linked tetrameric peptides containing a C-terminal hydrazide moiety on each dimer exhibited highly potent activities in the minimum inhibitory concentration (MIC) range of 0.49–2.33 μm. A second series of tetrameric analogues with C-terminal hydrazide modification was prepared by using alternative conjugation linkers including trans-1,4-dibromo-2-butene, α,α’-dibromo-p-xylene, or 6-bismaleimidohexane to determine the effect of length on activity. Each displayed potent and broadened activity against Gram-negative nosocomial pathogens, particularly the butene-linked tetrameric hydrazide. Remarkably, the greatest MIC activity is against P. aeruginosa (0.77 μm/8 μg mL−1) where the monomer is inactive. None of these peptides showed any cytotoxicity to mammalian cells up to 25 times the MIC. A diffusion NMR study of the tetrameric hydrazides showed that the more active antibacterial analogues were those with a more compact structure having smaller hydrodynamic radii. The results show that C-terminal PrAMP hydrazidation together with its rational tetramerization is an effective means for increasing both diversity and potency of PrAMP action.

Li, W.; O’Brien-Simpson, N. M.; Yao, S.; Tailhades, J.; Reynolds, E. C.; Dawson, R. M.; Otvos, L.; Hossain, M. A.; Separovic, F.*; Wade, J. D.* (2017): C-Terminal Modification and Multimerization Increase the Efficacy of a Proline-Rich Antimicrobial Peptide, Chem. Eur. J., 23, 390-396, DOI: 10.1002/chem.201604172.

Previous
Previous

11. Fluorescent Ion Efflux Screening Assay for Determining Membrane-Active Peptides

Next
Next

9. Membrane Interactions of Proline-Rich Antimicrobial Peptide, Chex1-Arg20, Multimers